Seit einigen Jahren wird von den smart materials ein hohes Anwendungspotenzial in der Industrie, im Design oder in der Architektur erwartet. Einige Werkstoffexperten gehen sogar so weit, dass sie in den nächsten 20 Jahren einen Wandel von Produkten mit hoher Komplexität hin zu solchen mit struktureller Einfachheit prophezeien. Funktionen werden vom Material übernommen, die Intelligenz ist quasi in den Werkstoff integriert.

Weltweit arbeitet derzeit eine Vielzahl von Forschergruppen an der Erschließung der Potenziale von smart materials. Während sich die einen der Weiterentwicklung von Hightech-Werkstoffen wie den thermischen und magnetischen Formgedächtnislegierungen (FGL), Piezokeramiken oder elektroaktiven Polymeren verschreiben, versuchen andere, die Werkstoffintelligenz mit natürlichen Materialien umzusetzen und Vorgänge aus der Natur nachzuahmen.

So weist beispielsweise die Oberfläche der Birkenrinde stark wasserabweisende, rutschfeste und antiseptische Eigenschaften auf, die für Lebensmittelverpackungen und Anwendungen in Sport oder Nassräumen geeignet sind. Die Qualitäten gehen auf den sekundären Pflanzenstoff Betulin zurück, der sowohl für die weiße Färbung verantwortlich ist, als auch den Baum vor UV-Strahlung schützt und ihm antimykotische Eigenschaften verleiht. Birkenrinde ist somit hervorragend zur Aufbewahrung von Lebensmitteln geeignet. Angewendet schützen die Aufbewahrungsbehälter »Tuesa« den Inhalt vor Schimmelpilzen und verlängern die Haltbarkeit um ein Vielfaches.

Der Botaniker Prof. Wilhelm Barthlott an der Universität Bonn und Prof. Thomas Schimmel vom Institut für Angewandte Physik (KIT) untersuchen, wie funktionale Luftschichten an Werkstoffoberflächen erzeugt werden können. Dieses Phänomen wird als »Salvinia Effekt« bezeichnet. Einige Tiere und Pflanzen wie zum Beispiel Rückenschwimmer und Schwimmfarne weisen eine stark wasserabweisende und superhydrophobe Oberfläche auf. Unter Wasser getaucht, bildet sich eine dauerhaft stabile Luftschicht aus. Es gelangt kein Wasser zwischen die feinen Härchen, die Luftschicht wird eingeschlossen und wirkt reibungsreduzierend. Im EU-Projekt »AIRCOAT« wird gerade eine Beschichtung für Bootsrümpfe entwickelt, um Energieverbrauch und Abgasemissionen im Bootsverkehr zu reduzieren.

Die Designer Jann Jon Fadri und Florin Stettler aus Basel möchten mit ihrer »Vaneo Active Wall« Holzfassaden und -oberflächen auf Feuchteeinflüsse reagieren lassen. Dazu machen sie sich die hygroskopischen Eigenschaften von dünnen Holzschichten zunutze, die sich bei Änderung der Luftfeuchtigkeit verformen und dabei Öffnungen in der architektonischen Haut zulassen. Der Effekt geht darauf zurück, dass Zellulosefasern bei Anstieg der relativen Luftfeuchtigkeit in der Umgebung Wassermoleküle in der Faserstruktur binden. Dabei kommt es zu einer Volumenänderung, die bei vielen Holzarten in der Wachstumsrichtung der Faser höher ausfällt als quer dazu. Werden die Fasern in dünnen Holzlagen bewusst ausgerichtet und die Schichten fest miteinander verbunden, entstehen bei unterschiedlichen Ausdehnungsrichtungen der Fasern Spannungen, die Formveränderungen hervorrufen können.

Einem Forscherteam der Universität Stuttgart ist es mit einem ähnlichen Ansatz gelungen, eine formveränderliche architektonische Struktur eines Holzfilaments herzustellen: Die Spannungen werden durch die hygroskopischen Eigenschaften von Holz durch Ausrichten der Zellulosefasern beim 3D-Drucken erzeugt. Die Drucktechnologie wurde bereits so weit entwickelt, dass die 4DmultiMATS auf Schwankungen der Luftfeuchtigkeit reagieren. Ziel der Wissenschaftler ist es, Fassadenelemente aus Holz zu drucken, die sich bei Sonnenschein öffnen und unter Einfluss von Regen, Nebel und Feuchtigkeit wieder verschließen.

Weitere Anwendungsbeispiele zu smart materials findet man in der Fachpublikation »Materials in Progress – Innovationen für Designer und Architekten«, die Mitte Juni 2019 beim Birkhäuser Verlag erschienen ist.

Text: Dr. Sascha Peters