Being the innovation network for smart materials, smart3 promotes and coordinates research and development projects especially for SME. Current and past R&D as well as students projects within the smart³ network are described bellow.

An overview of existing prototypes can be found here.

Besides federally funded research and development projects, we also support students of various universities in research projects: [Go to student projects].

Basic Projects


Process technologies for smart materials

The focus of the innovation network smart3 lies in developing trendsetting products that rely on smart materials. These can be used for energy harvesting, as actuators or sensors. Thus, a paradigm change in designing mechatronic components and products can be induced. By integrating sensor and actuator functions into the material level, existing barriers regarding space, weight and growing component complexity can be removed. This may lead to profound changes in product design (basic project Smart Tools for Smart Design), value chain design, value networks (basic project Smart Transfer), as well as in regard of new production methods.

The SmartProcesses project will result in maps to describe the potential of smart materials as well as in defining necessary steps for mass production.


Feasibility study regarding shape memory alloy based implants for dental, spine and pelvis surgery

Main issues for replacement surgery are septic and aseptic loosening of the implant. Both, the bone structure affected by the surgery as well as degenerative diseased bone sections make high demands on an implant. The research project aims at finding new anchoring concepts based on thermal shape memory alloys. Especially withing the field of dental, spine and pelvis implants, an additional anchoring in the bone structure would have significant impact; these disciplines place emphasis on minimally invasive aditus, mechanical fixation and readiness for use directly after surgery.

SmartImplant focusses on three different use cases of implants: dental implants, pelvis implants especialls in trauma surgery, and implants for spine surgery, neurosurgery and orthopedics. The particular requirements differ based on anatomic and medical boundary constitutions. That is the basis of the respective implant concept. The active materials, necessary production technologies, as well as rules and regulations form the framework for all of these fields of application. The results of the subprojects will be used to design development and process chains for SMA implants which can be transferred to other implant systems.

Network Identity for smart3

Smart network for smart innovation

Network Identity aims at strengthening the innocative capacity of smart3 members and R&D projects. Real innovation, especially in fields like smart materials, can only happen aside of worn-out habits, but must focus on interdisciplinary cooperation. To enable this change in process, smart3 must establish a common reference point, a network identity, that provides orientation and guidance for all partners in designing and realising innovation concepts. However, a network identity cannot simply be set up, but its development can be commonly supported. The research project initiates this development process and promotes the necessary steps: participative research (interviews, workshops, surveys, etc.) initiates the formulation of basic rules of cooperation and a commonly accepted networl management. Both processes aim at facilitating new partner constellations in smart3, charing knowledge and ideas and implement these into concrete projects.


Structure development for technology transfer and value added organisation for piezo-based functional components

SmartTransfer aims at developing strategic organisational structures for transferring key technologies of piezo ceramics. Thus, existing innovation barriers will be removed. The projects focusses on SME that address parts of the value chain, whose economical success on the other hand is limited by

  • Missing technologies for integration
  • path dependencies in innovation processes
  • Insufficient cultures of cooperation
  • Unused market potentials

By opening the potential of the technological know-how within smart3, the project partners design and test pilot production processes that support the rollout of smart products, reducing the investment risk.

Smart Tools for Smart Design (ST4SD)

Bringing Engineers and Designers together for added value in product development

Developing smart materials based products requires profound technological knowledge. Thus, generally engineers develop specific applications based on smart materials. On the other hand, designers normally cannot easily acces the knowledge about specific technologies, modes of operation and handling parameters. This complicates a proper involvement in product development cycles and hinders cooperation among disciplines.

ST4SD aims at integrating design right at the start of smart materials based product development for generating products with unique selling propositions. Based on a commonly created materials database, processes, formates and tools have been designed, created and tested that allow designers to access the full potential of smart materials. Possibilities and limitations can be estimated ad hoc. This enables design and realisation of trendsetting new products based on smart materials.


Smart Production

Components for production systems and processes


Tool-integrated chipping process monitoring

Growing complexity in production processes requires growing accuracy of process parameters. Even minor deviation may cause instable processes which leads to a decline in productivity and quality. Moreover, the effort for reaching stable fabrication increases significantly.

Using the example of chipping, SensoTool develops an active regulation of process parameters. Thus, process variations can be corrected instantly. Process parameters as feed or cutting rate can be updated in real-time. Thus, the process always is within the optimal range, productivity and quality can be improved, waste can be avoided. Main parameters for evaluating the processes are cutting force and tool temperature. These will be measured directly at the tool and transferred to the machine control, which realises the process intervention.


  • Development and characterization of suitable piezoelectric film systems (PZT, AIN)
  • Concept development for integrating sensor technology and electronics into the tool
  • Development of an RFID based transfer of measured data and supply energy
  • Testing of single components
  • System integration and installation of several demonstrators
  • Testing of the system in production processes
  • Consideration of cost effectiveness and value chains

Smart Health

Enlarging functionality of medical equipment


Active positioning cushion based on SMA

In Germany, on average 673.500 children are born each year. Research shows that 19.7% of infants in the fourth month are affected by cranial asymmetry. The percentage rises significantly in countries where supine sleeping position is recommended to avoid a major cause of sudden infant death syndrome (SIDS).
These deformities can be caused postnatally, but also by positional anomalies in utero. Cranial asymmetry is an asymmetric growth of the infant's skull caused by external pressure in connection with relatively rapid growth and the skull's weak structure (plagiocephalus). Due to the infants' immobility in the first months, pressure may be applied on the same area of the cranium for relatively long periods of time which intensifies the negative effects.

The R&D project develops a positioning system that continuously moves the infant's head left to right. This is realised by shape memory alloys that steadily deform in a predefined manner. Thus, without interrupting the child's sleep, various contact points of the cranium can be approached which avoids a permanent pressure. Thus, deformation can be avoided and treated.

As acturator, noiseless shape memory alloys, integrated into synthetic kinematics, will be unsed. The head's movement is realised in customizable, electronically controleld intervals. A textile structure serves as direct interface to the patient.

Furthermore, the intergration of periphery like babyphone, child surveillance sensors for detecting the head's position or the like will be researched.


Chirurgische Saug-/Spülsysteme aus Formgedächtnismaterialien

Die Stirnhöhle ist durch ihre spezielle anatomische Lage operativ besonders schwierig zu erreichen. Das operative Spektrum reicht von der Freimachung des Drainageweges durch die Siebbeinzellen (sogenannte Typ-I-Drainage nach Draf) bis zur maximalen Wegnahme des Stirnhöhlenbodens durch die Nase (Typ-III-Drainage). Besonders wichtig ist die endoskopische Wegnahme und Eröffnung von Siebbeinzellen welche die Stirnhöhlendrainage einengen. Dies verlangt den Einsatz spezieller Winkeloptiken und spezieller Stirnhöhleninstrumente.

 Bedingt durch die besondere Lage besteht unter Anwendung von konventionellen Instrumenten die Herausforderung, die Stinhöhle für die Präparation gut zu erreichen. Vorgegebene Biegungen an Instrumenten wie der Stirnhöhlenstanze, gebogene Zängchen oder Stirnhöhlensauger benötigen auch annähernd gleiche anatomische Strukturen. Stirnhöhlen, die schwer zu erreichen sind, machen die Erweiterung des knöchernen Stirnhöhlenzuganges durch Abtragen des Stirnhöhlenbodens erforderlich.


Im FuE-Projekt soll ein chirurgischer Sauger entwickelt werden, der in der geraden Ausgangsform in die Nase eingeführt wird, um dort wenig Platz einzunehmen. Anschließend soll das Instrument durch den Chirurgen "auf Knopfdruck" die eingeprägte gebogene Zielgorm einnehmen, damit die Nische des mittleren Nasengangs zwischen der Stirnhöhle und Nasenhaupthöhle besser erreicht werden kann. Dies soll mit Hilfe thermischer Formgedächtnislegierungen (FGL) umgesetzt werden. Die Aktivierung kann bsp. elektrisch über eine Widerstandserwärmung oder durch werwärmtes Spülwasser erfolgen.

Weiterhin soll die Entwicklung genutzt werden, um den konventionellen Stirnhöhlensauger um die Funktion eines Spülkanals zu erweitern. Bisherige Stirnhöhlenpräparationen erfordern einen stetigen Wechsel zwischen der Einführung eines Saugers und der Spülsonde.

Das Funktionsprinzip soll auch auf Saug-Spül-Vorrichtungen für Eingriffe in der Dental- sowie der Neurochirurgie übertragen werden.


Mit der individuell angepassten Form kann ein besserer Winkel erreicht und damit das Verletzungsrisiko minimiert werden. Die angepasste Form könnte dazu beitragen, weniger traumatisch zu operieren. Es wird angenommen, dass Instrumentenwechsel durch die Kombination von Sauger und Spülung reduziert werden und zu einem geringeren Verletzungsrisiko und damit höherer Patientensicherheit beitragen. Es besteht weiterhin die Annahme, dass diese Entwicklung auch zu einer Verkürzung der OP-Zeit führt.

Smart Living

Lifestyle products and smart building technology


Selbstregulierenden Sonnenschutzkomponenten für die Gebäudehülle

Laut EU-Parlament müssen die Mitgliedsländer der Europäischen Union 2020 sicherstellen, dass alle öffentlichen Bauten als Niedrigstenergiegebäude ausgeführt werden. Aus diesem Grund müssen ganzheitliche Energiekonzepte entwickelt werden, die den Primarenergieverbrauch des Gebäudes erheblich reduzieren. Gleichzeitig hat der Kühlenergiebedarf bei Gebäuden in den vergangenen Jahren rasant zugenommen.
Vor allem im Nichtwohnungsbau kommen Klimatisierungsanlagen zum Einsatz, um der sommerlichen Überhitzung entgegenzuwirken. Internationale Studien gehen davon aus, dass es von 1990 bis 2020 zur Vervierfachung des Kühlbedarfs kommen wird. Aus dieser Entwicklung resultieren immense ökologische Probleme. Energieautarke Systeme haben hier ein sehr großes Zukunftspotenzial.

Der Einsatz gut ausgelegter Verschattungssysteme kann den Bedarf an Kühlenergie um bis zu 75 % minimieren. Konventionellen Systeme bergen jedoch einen hohen Wartungsaufwand, der Betriebsenergiebedarf ist hoch und die teilweise noch fehlerhafte Steuerung aus ökologischer und ökonomischer Sicht problematisch.
Im angestrebten Projekt soll der Lösungsansatz eines energieautark funktionierenden Verschattungssystems umgesetzt werden mit dem Ziel der Reduzierung des Energiebedarfs zur Raumklimatisierung sowie der kompletten Einsparung der Betriebsenergie in Neu- und Bestandsbauten. Hierfür soll eine thermosensitive Aktorik auf Basis des Formgedächtniseffektes entwickelt werden, die das Verschattungssystem den Umgebungsbedingungen entsprechend reguliert. Gleichzeitig soll ein Eingreifen des Nutzers teilweise ermöglicht werden z. B. im Winter, um trotz nicht benötigtem Überhitzungsschutz einen bedarfsgeregelten Blendschutz zu ermöglichen.

Im vorliegenden Projekt soll ein energieautarkes, selbstregulierendes Verschattungssystem entwickelt werden. Dabei soll die Möglichkeit eines manuellen Eingreifens im Bedarfsfall (Blendschutz) gegeben bleiben und dennoch eine reduzierte Komplexität im Vergleich mit bestehenden Systemen gleicher Funktionalität erreicht werden. Gelingen soll dies durch die Entwicklung einer entsprechenden Aktorik auf Basis von Formgedächtnislegierungen (FGL). Diese soll im Sommer mithilfe des thermosensitiven Materials eine auf die Umgebungsbedingungen abgestimmte autarke Verschattung realisieren.
Dadurch wird die Energieeffizienz des Systems extrem gesteigert. Im Winter, wenn in der Regel aufgrund der Umgebungsbedingungen keine selbstregulierende Verschattung eintritt, soll ein manuelles Eingreifen des Nutzers ermöglicht werden, um die Benutzerfreundlichkeit des Systems zu erhöhen und damit die Marktakzeptanz erheblich zu steigern.

Smart Mobility

Smart materials in transport and mobility applications



To increase the awareness of smart materials and simultaneously generate new stimuli for products based on smart materials, smart³ closely cooperates with universities and other educational institutions. Experts of the innovation network accompany students during semester projects or workshops, provide know-how and material so that the students can implement their own ideas.

Smart home

smart³ home was a student project which picked up the research and development efforts of Burg Giebichenstein University of Art and Design in the smart³ context and implemented them into teaching.
Students of the bachelor and master degree programmes designed visionary lifestyle and living products. Based on the network's four material groups, they focussed on resource-saving showcase applications that have the potential for groundbreakning products and processes.

Additionaly, the projects aimed at generating acceptance for innovation as prerequisite for self-steering, noiseless products for accelerating a sustainable lifestlyle.
The smart³ network partners provided deep insights into the technology and accompanied the implementation of the student's ideas.

Several ideas of the smart³ home projects have been transferred into research and development projects in smart³ as well as in actual start-up products.


Convertible and adaptive surfaces can be found in various forms in nature. Providing safety, protective mimicry, adaptability oder energetic exchange - reactive covers, skins and membranes serve many purposes.
Within the CHANGE project at weißensee Academy of Art, principles of adaption and change have been analyzed for surfaces and covers and implemented in the context of body and space. Main focues of the project was the integration of smart materials and examining their potentials for design.

Smart Materials meet Year of Light

In the International Year of Light 2015, creative people from Dresden and it's sourrounding had the chance of realizing their project ideas based on smart materials. The workshop "smart materials meet year of light" brought together creatives of various professions and smart material experts of the Fraunhofer IWU. At the Dresden Makerspace, backed by the innovation network smart³, the ideas took shape and resulted in various demonstrators and prototypes - from self-adjusting lights to flying toys, from smart oven lights to intelligent glasses.